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Abstract—We introduce FOF-X for real-time reconstruction of
detailed human geometry from a single image. Balancing real-
time speed against high-quality results is a persistent challenge,
mainly due to the high computational demands of existing
3D representations. To address this, we propose Fourier Oc-
cupancy Field (FOF), an efficient 3D representation by learn-
ing the Fourier series. The core of FOF is to factorize a
3D occupancy field into a 2D vector field, retaining topology
and spatial relationships within the 3D domain while facil-
itating compatibility with 2D convolutional neural networks.
Such a representation bridges the gap between 3D and 2D
domains, enabling the integration of human parametric models
as priors and enhancing the reconstruction robustness. Based
on FOF, we design a new reconstruction framework, FOF-X,
to avoid the performance degradation caused by texture and
lighting. This enables our real-time reconstruction system to
better handle the domain gap between training images and
real images. Additionally, in FOF-X, we enhance the inter-
conversion algorithms between FOF and mesh representations
with a Laplacian constraint and an automaton-based discontinu-
ity matcher, improving both quality and robustness. We validate
the strengths of our approach on different datasets and real-
captured data, where FOF-X achieves new state-of-the-art results.
The code has already been released for research purposes at
https://cic.tju.edu.cn/faculty/likun/projects/FOFX/index.html.

Index Terms—real-time, 3D human reconstruction, single im-
age, monocular 3D reconstruction.

I. INTRODUCTION

RECONSTRUCTING a 3D human from a single image
has emerged as a popular task in computer vision and

graphics, which can be widely used in various downstream
applications, such as mixed reality and virtual try-on. However,
real-time, high-fidelity monocular 3D human reconstruction
remains challenging. The core of this challenge lies in the
3D representation, as it significantly influences the design
and performance of reconstruction and generation approaches.
Despite some promising results, existing methods [1]–[4]
typically suffer from high computational consumption and
lack of robustness. Consequently, a good 3D geometry rep-
resentation is essential for 3DTV, Holographic Telepresence
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Fig. 1. Left: Our FOF-X can reconstruct 3D human shapes from a live
video stream with a real-time speed of over 30 FPS. Right: Compared
to the original FOF-SMPL, our FOF-X demonstrates better robustness to
variations in texture and lighting. Under challenging lighting conditions,
such as strong illumination or shadows, FOF-X produces more detailed
and accurate reconstructions (first two rows). FOF-X effectively avoids the
incorrect reconstruction caused by textures, such as the stripe pattern on the
edge of the shirt (third row). Note that FOF-SMPL is not real-time.

systems, and other real-time applications, which must fulfill
the requirements of accuracy, efficiency, and compatibility [5].

Classic representations, such as voxel grids [6] or meshes
[7]–[9], have been explored for monocular human reconstruc-
tion. However, voxel grids require a space complexity of
O(n3) (where n is the resolution of grids in each dimen-
sion), and meshes struggle with topology changes or large
deformations. Although some recent methods [4], [10] propose
optimization-based pipelines combining normal maps, voxel
grids, and meshes, they all suffer from efficiency issues.

Implicit neural representations have emerged and been
widely used in monocular human reconstruction [1], [3], [11]–
[13]. These methods treat 3D space as a continuous field,
such as an occupancy or signed distance field, represented as
F (x, y, z) : R3 → R. Instead of voxel grids, a neural network
models the field, allowing results at any resolution. However,
these methods infer values across numerous spatial grid points,
which slows down inference and makes high-frame-rate or
real-time reconstruction a significant challenge. Based on PIFu
[1], Monoport [14] proposes an efficient sampling scheme
to speed up inference, achieving 15 FPS only for mesh-free
rendering. However, when generating a complete mesh, their
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TABLE I
COMPARISON WITH EXISTING 3D REPRESENTATIONS

Representation Aligned
with Images High-Quality Computational

Efficiency
Flexible

Topology

Parametric Model
[15]–[17] % % ! %

Voxel Grid [6] ! % % !

Mesh [7]–[9] % % ! %
Implicit Function [1],

[3], [11]–[13], [18] ! ! % !

Our FOF(-X) ! ! ! !

Raw Mesh Algorithms Used in FOF Algorithms Used in FOF-X

w/o Laplacian
coordinate constraint 

FOF-to-Mesh
Inversion

FOF

w/o Automaton-based 
Discontinuity Matcher

Mesh-to-FOF
Conversion

FOF

w/ Automaton-based 
Discontinuity Matcher

w/ Laplacian
coordinate constraint 

Fig. 2. FOF and meshes can be inter-converted flexibly. The newly designed
inter-conversion algorithms in FOF-X exhibit better robustness and quality.
Our automaton-based discontinuity matcher eliminates floating artifacts during
the conversion process (first row). With the Laplacian coordinate constraint,
we resolve stair-step artifacts on the recovered meshes (second row).

method operates at less than 10 FPS, and the results are
often worse than PIFu. These limitations hinder Monoport’s
applicability with downstream applications.

To address these challenges, we propose Fourier Occupancy
Field (FOF), a novel representation for monocular real-time
and detailed 3D human reconstruction. FOF is an expressive,
efficient, and flexible 3D geometric representation manifested
as a 2D map aligned with the input image. The key idea of
FOF is to represent a 3D object with a 2D field by decom-
posing the occupancy field along the z axis into a Fourier
series, retaining only the first few terms. This approach is not
only memory-efficient but also adept at preserving essential
geometric information. By implementing grid sampling on
the x and y axes, FOF can be explicitly stored as a multi-
channel image. This feature allows 3D geometric priors, such
as SMPL models, to be fed directly into the CNN. With our
inter-conversion algorithms between FOF and mesh represen-
tations, 3D and 2D information can be processed within a
unified framework. Unlike depth maps, FOF encapsulates the
complete geometry of an object, not just its visible parts,
significantly enhancing the fidelity of the reconstructed human
shapes. Detailed comparisons with existing representations are
presented in Table I.

When applying FOF directly to a real-time system, we
observed certain limitations in robustness. The reconstruction
is degraded by texture and lighting effects. Additionally,
efficiency and robustness issues in the original mesh-to-FOF

conversion algorithm used in the conference version prevent
the use of the SMPL prior in the real-time system, resulting in
unsatisfactory performance on challenging poses. Furthermore,
the original FOF-to-mesh algorithm comes with stair-step
artifacts, further compromising the reconstruction quality. To
address these challenges, we propose FOF-X, a novel recon-
struction framework. With a single RGB image as input, FOF-
X first translates it to dual-sided normal maps, which are unaf-
fected by texture and lighting, as an internal representation of
the human body. This strategy allows the network to focus on
geometric details, significantly improving the robustness and
performance of the reconstruction. To ensure the robustness
and fidelity of FOF computations, we design an automaton-
based discontinuity matcher to filter out invalid fragments.
This matcher can be parallelized on a GPU, enabling real-
time conversion of parametric models. Additionally, we incor-
porate a Laplacian coordinate constraint in the FOF-to-mesh
conversion process to eliminate artifacts caused by view bias,
resulting in more accurate mesh reconstructions and improving
the fidelity of the final output. As shown in Fig. 2, the newly
designed mesh-to-FOF and FOF-to-mesh algorithms in FOF-
X effectively address the robustness issues. Based on these
updates, our final method, FOF-X, achieves new state-of-the-
art results in both speed and accuracy, contributing a novel
solution for real-time detailed human reconstruction from a
single image. Experiments also show that FOF-X has better
generalization for real-captured data.

The main contributions of our work are as follows:

• We propose Fourier Occupancy Field (FOF), a novel
representation for 3D humans, which can represent a
high-quality geometry with a 2D map aligned with the
image, bridging the gap between 2D images and 3D
geometries.

• We introduce FOF-X, a new reconstruction framework
designed for detailed 3D human reconstruction from a
single RGB image. FOF-X utilizes dual-sided normal
maps as an internal representation, avoiding the effects
of texture and lighting to focus on geometric accuracy.

• In FOF-X, we design parallelized inter-conversion al-
gorithms between FOF and meshes with a Laplacian
coordinate constraint and an automaton-based discon-
tinuity matcher, further enhancing the robustness and
reconstruction quality.

• Compared with state-of-the-art methods based on other
representations, our approach can produce high-quality
results in real-time. Our system is the first 30+FPS
pipeline, achieving a twofold improvement in speed over
Monoport [14], coupled with superior quality.

An early version of our method, including only FOF,
was published as a conference paper [19]. Based on our
FOF representation, several works for generation [20] and
reconstruction [21]–[23] have been proposed. In this paper,
we substantially extend the original version by developing
FOF-X. Firstly, we design a new reconstruction framework
that greatly mitigates the performance degradation caused by
texture and lighting effects. Secondly, we propose a robust
mesh-to-FOF conversion algorithm with an automaton-based
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discontinuity matcher, enabling real-time execution and signif-
icantly improving the system’s robustness when facing chal-
lenging poses. Thirdly, we propose a FOF-to-mesh algorithm
with a Laplacian coordinate constraint for greater robustness
and fidelity. Such a strategy effectively addresses artifacts
caused by view-direction bias without any loss of geometric
details. Fourth, we employ cosine series as the subspace
approximation basis, retaining the Fourier-like approximation
capacity while eliminating Gibbs phenomena through even-
periodic boundary extension. Additionally, we evaluate FOF-X
through comprehensive experiments including: testing on more
datasets, comparisons with various state-of-the-art methods,
and more detailed ablation studies, all confirming the method’s
effectiveness, efficiency and robustness.

FOF-X offers three key advantages: (1) FOF-X is sampling-
scalable along all three spatial axes, allowing for resolution
adaptation at inference without retraining, which supports
diverse deployment scenarios with varying speed, quality,
and memory constraints; (2) FOF-X represents 3D objects
as multi-channel images, requiring only a simple tensor mul-
tiplication to reconstruct the 3D occupancy field; (3) FOF-
X can be seamlessly inter-converted to and from the mesh
representation, making it compatible with traditional graphics
pipelines. Additionally, as a compact and computationally
efficient 3D representation, FOF-X is suitable for real-time
applications like holographic transportation.

II. RELATED WORK

Regarding geometric representations, we categorize main-
stream monocular 3D human reconstruction approaches into
three types: surface-based reconstruction, volume-based re-
construction, and “sandwich-like” reconstruction. Note that
“sandwich-like” reconstruction can be considered a blend of
surface-based and volume-based methods. Additionally, gener-
ative models can also be used directly or indirectly for single-
image 3D human reconstruction. We review these methods in
this section.

A. Surface-based Reconstruction

Surface-based approaches focus on inferring the interface
between geometry and empty space, and can be broadly
classified into three categories: parametric models, UV-map-
based methods, and graph-based methods.

Parametric models, such as SMPL [15], SMPL-X [16],
and STAR [17], are popular representations for naked 3D
humans. These models are derived from large datasets of
naked human shapes and use statistical methods to create
analytical models, which can generate a human body mesh
with just a few dozen parameters. Building on these models,
many works [24], [25] estimate 3D human shapes from an
RGB image by predicting the parameters of the parametric
model. However, these methods are limited in that they cannot
reconstruct clothing or hair.

UV-map-based methods attempt to estimate clothed humans
by adjusting the vertices of the parametric models. Alldieck
et al. [8] warp the input image to align with the UV map
and calculate the displacements on the T-pose SMPL mesh.

However, their results are always in T-pose and do not align
well with the input images. Zhu et al. [7], [26] employ a four-
stage process constrained by joints, silhouettes, and shading,
but their results are sometimes inconsistent with the images.

Graph-based representations are naturally compatible with
triangle meshes. Li et al. [9] use graph neural networks to
reconstruct topology-consistent geometries of clothed humans,
but the recovered mesh tends to be smooth and lacks fine
details. Representing 2D manifold surfaces of different 3D ob-
jects with a fixed structure is very challenging. Consequently,
most methods heavily rely on the topology defined by SMPL
and cannot produce detailed human geometries with complex
topology. Habermann et al. [27] propose a deep learning
approach for monocular dense human performance capture,
but this method requires scanning the actor with a 3D scanner
to create a template mesh. In a word, graph-based methods
struggle to align image features accurately with the results,
leading to unstable and over-smoothed outputs.

B. Volume-based Reconstruction

Volume-based methods estimate attributes such as occu-
pancy and signed distance for each point in the 3D space,
allowing them to represent 3D shapes with arbitrary topology.
Voxel grids and implicit neural networks are the two main
representations used in volume-based methods.

Zheng et al. [6] regress voxel grids of 3D humans using
convolutional neural networks, but this approach requires in-
tensive memory and results in models with limited resolution.
Unlike voxel grids, implicit neural representations can depict
detailed 3D shapes without resolution limitations. Saito et
al. [1] use pixel-aligned functions to reconstruct a 3D human
from a single RGB image and further improve 3D geometric
details using normal maps [11]. Zheng et al. [12] use a
voxelized SMPL mesh as a prior to enhance robustness. Xiu et
al. [3] propose a method to correct the SMPL model estimated
by other methods [24], [25], [28] based on the input image,
and then regress the occupancy field from the normal map and
the signed distance field of the corrected SMPL. While their
results are robust to human poses, the geometric details often
do not match the input images and can be noisy.

Further advancements like GTA [29], SiFU [2], and D-IF
[30] explore implicit neural representations with a globally-
correlated 3D-decoupling transformer and uncertainty-aware
implicit field inference, respectively. However, they still strug-
gle with computational efficiency. Although Li et al. [14]
propose an efficient sampling scheme to speed up inference,
they achieve 15 FPS only for mesh-free rendering, and when
a complete mesh needs to be generated, their method operates
at less than 10 FPS.

Recent advancements have seen the utilization of Neural
Radiance Fields (NeRF) [31] in various reconstruction ap-
proaches, and subsequent methods [32]–[34] have been fur-
ther adapted for human reconstruction. NeRF applies volume
rendering to implicit volume-based representations, enabling
direct supervision of 3D scenarios with 2D images. Conse-
quently, SHERF [33] achieves the first generalizable Human
NeRF from a single human image, while ELICIT [34] employs
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a pre-trained CLIP model [35] for contextual understanding.
However, NeRF-based approaches primarily focus on view
synthesis and often lack detailed geometry generation from
monocular images.

C. “Sandwich-like” Reconstruction

In recent works [4], [36], [37], 3D objects are modeled using
front and back depth maps, resembling a sandwich structure
that encloses the inner space. However, depth maps only repre-
sent part of the geometric surface and cannot fully reconstruct
the object. Therefore, these methods require volume-based
post-processing, such as IF-Nets [38] and Poisson surface
reconstruction [39], to complete the result further. Any-Shot
GIN [37] extends the sandwich-like scheme to novel classes
of objects by predicting the depth maps of two sides from
a single image and performing shape completion with IF-
Nets. ECON [4] follows a similar approach and extends it
to 3D humans. It estimates the normal maps of two sides and
converts them into depth maps using an optimization method.
The parametric human model prior is also employed in the
shape completion stage to “inpaint” the missing geometry.
However, this optimization process is time-consuming, and its
instability may lead to incorrect geometric estimates.

D. Leveraging Generative Models

Reconstructing a 3D human body from a single image is
inherently challenging due to incomplete observations, making
it difficult to regress geometric information accurately. In this
case, generative models can offer plausible completion for
invisible regions. SiTH [18] generates the back-view image
with an image-conditioned diffusion module and then predicts
dual-sided normal maps for subsequent reconstruction. TeCH
[10] recovers human meshes with a SMPL-X initialized hybrid
Deep Marching Tetrahedra (DMTet) representation and Score
Distillation Sampling (SDS) Loss [40], achieving visually
impressive results but with noisy surfaces. Human-LRM [41]
first uses an LRM [42] model to reconstruct the human body
as a NeRF from a single image. It then applies a diffusion
model to refine the multi-view images rendered from the
NeRF, followed by another LRM reconstruction based on
the refined images to produce the final result, but does not
provide a substantial improvement in reconstructed geometry
quality. PSHuman [43] first uses a multi-view image diffusion
model to generate six views of global full-body images and
local face images. Then, using the generated normal and color
maps, SMPL-X is deformed and remeshed by differentiable
rasterization. However, the heavy pipeline makes it inefficient
for real-time use. These generative model-based methods are
typically time-consuming, and the reconstructed result does
not accurately match the input image.

To solve the problems with existing representations, we
present Fourier Occupancy Field (FOF) in this paper. FOF
is well-aligned with the input image and offers superior
efficiency compared to existing representations. Leveraging the
proposed efficient and flexible 3D geometry representation of
FOF, we design an extensive reconstruction framework FOF-
X and parallelized inter-conversion algorithms between FOF

and meshes. Based on FOF-X, we contribute a robust high-
quality human reconstruction system operating at 30 FPS with
a single RGB camera.

III. METHOD

Fig. 3 illustrates the overall pipeline of our method. Our
work aims to reconstruct a high-fidelity 3D human model from
a single RGB image in real time. In this section, we elaborate
on the technical details of our approach. We first introduce our
vanilla FOF (Fourier Occupancy Field), an efficient and flex-
ible representation for 3D geometry, in Sec. III-A. Then, we
extend FOF to FOF-X with a new reconstruction framework
with dual-sided normal maps as an internal representation
(Sec. III-B), a parallelized mesh-to-FOF conversion algorithm
with an automaton-based discontinuity matcher (Sec. III-C1),
and a more robust FOF-to-mesh extraction algorithm with a
Laplacian coordinate constraint (Sec. III-C2). These updates
further improve the quality of the reconstructed meshes while
keeping the overall pipeline running in real time.

A. Formulation of Fourier Occupancy Field

1) Vanilla FOF: An overview of our FOF representation is
shown in Fig. 4. Without loss of generality, 3D objects to be
reconstructed are normalized into a [−1, 1]3 cube. Denoted by
(x, y, z) ∈ [−1, 1]3 the 3D coordinates, and by S the surface of
a 3D object, the 3D object can be described by a 3D occupancy
field F : [−1, 1]3 7→ {0, 0.5, 1}, where the occupancy function
F (x, y, z) is defined as

F (x, y, z) =

 1, (x, y, z) is inside the object,
0.5, (x, y, z) ∈ S,
0, (x, y, z) is outside the object.

(1)

Such a 3D representation is highly redundant, because only
a small subset, i.e., the iso-surface of F (x, y, z) with value
of 0.5, is sufficient to represent the surface of the object.
Direct inference of the 3D occupancy field F from a single
image not only confronts with the curse of dimensionality,
but also requires more computation and memory in handling
high dimensional feature maps. Note that the occupancy field
defined in the 3D cube can be regarded as the collection of a
large number of 1D signals defined on the lines along the
view direction. Without loss of generality, we assume that
the view direction is the same as the z-axis of the 3D cube.
The occupancy function, as a 1D signal f(z) : [−1, 1] 7→
{0, 0.5, 1}, along the line passing through a particular point
(x∗, y∗) ∈ [−1, 1]2 on the xy-plane can be written as
f(z) = F (x∗, y∗, z). We explore Fourier representation for
such a family of 1D occupancy signals and propose a more
compact 2D vector field orthogonal to the view direction,
namely Fourier Occupancy Field (FOF), for more efficient
representation of the 3D occupancy field, which is detailed in
the following subsections.

Fourier Series on a Single Occupancy Line: 1D occu-
pancy signals {f(z)} are essentially on-off signals switching
at the boundaries of human bodies, which lie in a low-
dimensional manifold in the ambient signal space. For accurate
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and fast 3D reconstruction, the compact representation should
have the following merits:

• Sampling Scalability: The representation should be able
to adapt to different sampling rates in the inference stage
without introducing systematic mismatches except for the
inherent approximation error due to sampling. Without
retraining, systems with such a representation would sup-
port diverse applications with different resolution, quality,
and speed requirements.

• Stable Reconstruction: The representation should provide
stable reconstruction quality for diverse humans with
various parameters such as garments, heights, weight, and
poses.

• Low-complexity Reconstruction: The representation
should allow low-complexity reconstruction to support
emerging real-time applications such as Holographic
Telepresence.

However, most popular representations do not enjoy all the
above merits. For instance, discrete Fourier transform and
discrete wavelet transform have stable and low-complexity
reconstruction, but only support the sampling rate used in
preparation of the training set due to their discrete nature.
Learned dictionaries are able to provide sparse representations,
but require computation-demanding iterative reconstruction,
leaving alone the sampling scalability. Without a doubt,
sampling scalability is the most difficult property to meet.
Pushing the concept of sampling scalability to the limit, one
representation would be scalable to arbitrary sampling rates in
theory if it allows continuous reconstruction along the z-axis.
Note that in practice the representation should stay discrete
and compact for efficient inference. Such a bridge of discrete-
representation and continuous-reconstruction motivates us to
use Fourier series for the representation of 1D occupancy
signals {f(z)}. By nature, the Fourier series would have an
infinite number of discrete coefficients, which is impractical.
Note that most energy of such a 1D occupancy signal con-
centrates on only a few low-frequency terms, which yields a
compact representation by subspace approximation.

Formally, let fp(z) be periodic extension of f(z). Note that
fp(z) satisfies the Dirichlet conditions:

• fp(z) is absolutely integrable over one period;
• fp(z) has a finite number of discontinuities within one

period;
• fp(z) has a finite number of extreme points within one

period.

Thus, fp(z) can be expanded as a convergent Fourier series:

fp(z) =
a0
2

+

∞∑
n=1

(an cos(nπz) + bn sin(nπz)) , (2)

where {an}, {bn} ∈ R are coefficients of basis functions
{cos(nx)} and {sin(nx)}, respectively. Note that by defining
the occupancy function as Eq. (1), Eq. (2) holds for discon-
tinuity at z∗ on the surface S because f(z∗) = (f(z∗−) +
f(z∗+))/2 = 0.5, where f(z∗−) and f(z∗+) are the left
hand limit and right hand limit of f(z) at z∗. For compact

representation, we approximate 1D occupancy signals by a
subspace spanned by the first 2N + 1 basis functions:

f̂(z) = b⊤(z)c, (3)

where b(z) = [1/2, cos(z), sin(z), . . . , cos(Nz), sin(Nz)]⊤ is
the vector of the first 2N + 1 basis functions spanning the
approximation subspace, and c = [a0, a1, b1, . . . , aN , bN ]⊤

is the coefficient vector which provides a more compact
representation of the 1D occupancy function f(z).

Fourier Occupancy Field: Such a Fourier subspace ap-
proximation is applied to all 1D occupancy signals over the
xy-plane:

F̂ (x, y, z) = b⊤(z)C(x, y), (4)

where C(x, y) is the (2N+1)-dimensional Fourier coefficient
vector for the 1D occupancy signal at (x, y). In this way, we
obtain the Fourier Occupancy Field C : [−1, 1]2 7→ R2N+1

for 3D occupancy field F .
Note that 3D coordinates (x, y, z) in Eq. (4) are continuous

and can be sampled at arbitrary rates as needed. Particu-
larly, unlike the discrete Fourier transform or discrete wavelet
transform, the subspace dimension for 1D occupancy signals
{f(z)} is not coupled with the sampling grid of z-axis. This
avoids potential sampling mismatches between the sampling
grid used in the training data and that in the testing stage. The
reconstruction of F̂ from the FOF C is sampling scalable
in the sense that the sampling rate along the z-axis can be
chosen as necessary, e.g., according to the requirement of
reconstruction quality and speed. 3D models at any resolution
can be readily obtained from the FOF representation by simply
altering the sampling rate along the z-axis.

2) FOF with Cosine Series: In FOF-X, we use the cosine
series instead of the Fourier series as the basis for the subspace
approximation. The cosine series shares similar properties with
the Fourier series but works with even periodic extension. The-
oretically, even periodic extension can avoid discontinuities,
preventing the overshoot known as the Gibbs phenomenon.
Therefore, the cosine series version of FOF representation is
used in FOF-X and throughout the following sections of this
paper. The only change is to modify Eq. (2) to:

fep(z) =
a0
2

+

∞∑
n=1

an cos(nπ
(z + 1)

2
). (5)

Because f(z) is defined on [−1, 1] but not [0, 1], a shift on z

is needed, which contributes to the term (z+1)
2 in Eq. (5).

B. Image-to-Image Reconstruction Network

In FOF-X, we introduce a novel reconstruction network with
dual-sided normal map to mitigate lighting interference in real-
world capture scenarios, coupled with integrated SMPL priors
that enhance pose robustness under challenging articulations.

1) Reconstruction with Dual-sided Normal Maps: One
important change in FOF-X is that we rely on dual-sided
normal maps estimated from input RGB images rather than
directly using the RGB images themselves to reconstruct
human geometry. When testing with RGB input, we found
a domain gap between the training images and real captured
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Fig. 3. The overall pipeline of FOF-X for monocular real-time human reconstruction. FOF-X takes an RGB image as input and exploits a SMPL body mesh
as a prior with the proposed mesh-to-FOF conversion algorithm (Sec. III-C1), which includes an automaton-based discontinuity matcher to ensure robustness.
Based on the rendered SMPL normal maps and input RGB image, the dual-sided normal maps are predicted as the internal representation and decoded to FOF
with the SMPL prior through an image-to-image network (Sec. III-B). The FOF representation (Sec. III-A) is then converted to a mesh with the FOF-to-mesh
inversion module (Sec. III-C2), incorporating a Laplacian coordinate constraint to enhance the quality of the output mesh.
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Fig. 4. The proposed Fourier Occupancy Field (FOF). Each pixel on the image I corresponds to a line in 3D space and can be described by an occupancy
function f(z), which can be expanded as Fourier series and represented with a vector C(x, y). Therefore, the 3D human model can be encoded as a 2D
vector field, forming our FOF. Note that the Fourier series here includes special forms such as the cosine series.

images, which significantly degraded the performance of our
method. Although we try to mitigate this gap with a physics-
based rendering engine (see Sec. IV-A), the reconstruction
network is still sensitive to different textures and lighting
conditions. To solve this, we design a new reconstruction
framework with the dual-sided normal maps as the internal
representation. Together with the FOF of the corresponding
SMPL model, it is then fed to the network and used to
reconstruct the human geometry. Since normal maps only keep
the geometric information and are not affected by texture and
lighting, the reconstruction network can focus on geometric
information with better robustness and performance.

Thanks to the efficient dimensionality reduction with sub-
space approximation, the task of learning FOF from dual-

sided normal maps can be essentially regarded as an image-
to-image process. To this end, we exploit the image encoder
built on the HR-Net [44] framework for its outstanding fitting
capability in various vision tasks. We use the weak perspective
camera model in our implementation, in which FOF (and
thus the reconstructed geometry) is naturally aligned with
the input RGB image. Note that FOF can also be used with
the normalized device coordinate space (NDC space) so that
various camera models, including the perspective camera, are
compatible with the framework.

2) SMPL Prior: Reconstructing a 3D object from a single
image is a highly ill-posed problem. To address this, 3D priors,
such as parametric body models, can be used to enhance the
robustness of the model. Thanks to the 2D field nature of
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FOF, we propose a novel approach that leverages 3D geometric
prior in 2D neural networks. We adopt the SMPL model as a
prior and convert it to FOF representation with the proposed
algorithm described in Sec. III-C1. Then, we concatenate it
with the RGB image as the input together. This can be written
as:

FH = G(Ndual,P ), (6)

where G(·) represents an image-to-image translation neural
network, which is HR-Net-48 in our implementation, Ndual

denotes the dual-sided normal maps, and P is the FOF with
16 terms of the corresponding SMPL model estimated from
the input image. The use of the prior makes the network
more robust to different poses and significantly improves
reconstruction quality for cases with high ambiguity.

3) Supervision: To train our network, we sample points
on the xy-plane and supervise the coefficients of the lines
corresponding to these points with mean squared error (MSE)
loss. To make the network more focused on human geometry,
we only supervise the human foreground region of the image.
The loss function L is formulated as:

L =
1

n

n∑
i=1

∥∥∥Ĉ(xi, yi)−C(xi, yi)
∥∥∥2
2
, (7)

where (xi, yi) ∈ M are sampled foreground pixels, M
is the foreground region, n is the number of foreground
pixels, C(xi, yi) is the ground-truth FOF coefficient vector,
and Ĉ(xi, yi) is the FOF coefficient vector predicted by the
network.

C. Inter-Conversion between FOF and Meshes

In FOF-X, the inter-conversion algorithms between FOF and
mesh representations are greatly improved.

1) Mesh to FOF with Automaton-based Discontinuity
Matcher: To prepare training data, 3D meshes should be
converted into FOF as training labels and input priors. By
definition Eq. (5), we are to calculate the first few terms of
the cosine series for each 1D occupancy signal f(z). For
generic signals, this would require numerical integration over
a sampled version of f(z), using e.g. the Adaptive Simpson
Method, which however may introduce numerical errors and
demand considerable computation.

Fortunately, thanks to the particular form of occupancy
signals, the cosine coefficients can be derived analytically with
exact solutions. Note that the 1D occupancy signal f(z) is
actually defined by discontinuities, where the line goes inside
or outside the mesh. We extract the discontinuous points of
f(z) by designing a rasterizer-like procedure shown in Alg. 1.
Formally, suppose that the line associated with f(z) passes
though the mesh for k times. For the ith traversing, let zi
and z′i be the locations going inside and outside the mesh,
respectively. Then, the set Z ≜ {(zi, z′i)}

k
i=1 collects those

intervals of the line that are inside the mesh. According to the
definition of the occupancy signal, we have: f(z) = 1, z ∈ Z ,
and f(z) = 0 otherwise, except for a finite number of

Algorithm 1 Mesh-to-FOF conversion
Input: A triangle mesh M = {ti}ni=1 ▷ A set of triangles
Output: FOF C ∈ RH×W×N

1: B[x, y]← ∅,∀(x, y) ∈ {1, ...,H} × {1, ...,W}
2: ▷ Initialize buffers
3: C ← 0 ▷ Initialize FOF
4: for i = 1 to n do ▷ parallelized
5: Compute the bounding box bi of ti
6: Compute the normal direction ni of ti
7: for each pixel (x, y) lying inside bi do
8: if the pixel (x, y) is inside ti then
9: Compute the depth z of (x, y)

10: if ni faces front then
11: B[x, y]← B[x, y] ∪ (z, 0) ▷ Add to buffer
12: else
13: B[x, y]← B[x, y] ∪ (z, 1) ▷ Add to buffer
14: end if
15: end if
16: end for
17: end for
18: for (x, y) ∈ {1, ...,H} × {1, ...,W} do ▷ parallelized
19: Sort the discontinuities in the buffer B[x, y]
20: Apply the automaton to the buffer B[x, y]
21: Compute integral results I with the buffer B[x, y]
22: C[x, y]← I
23: end for

discontinuities with measure zero. Therefore, we have the
following analytical solution for the cosine coefficients:

an =

∫ 1

−1

f(z) cos(tn(z + 1))dz

=
1

tn

k∑
i=1

sin (tn (z
′
i + 1))− sin (tn (zi + 1)) ,

(8)

where tn = nπ
2 . The FOF representation is obtained by

calculating the cosine coefficients for all the 1D occupancy
signals. Since the number of intervals k is generally small,
e.g., 1∼3 for human meshes, the calculation of an is of O(1)
complexity. Thus, the transformation from discontinuities to
FOF, shown in Alg. 1, has a computational complexity of
O(HWN), and can be parallelized on GPUs for real-time
running, where H and W are the height and width of the
FOF, respectively.

However, due to numerical errors and some non-watertight
meshes, rasterization may produce unpaired Z , i.e., a line
may encounter successive discontinuities both going out of or
into the mesh. And it can come to a going outside point first
instead of a going inside point. To solve this, we propose an
automaton-based discontinuity matcher to enhance the robust-
ness. Unlike what we do in the conference version [19], we
collect those discontinuities and normal vectors for each line
first and process them with an automaton before working out
the integral. Let’s consider the discontinuities corresponding
to one pixel. We sort these points by z first and then represent
them with a sequence of 0s and 1s, where 0 stands for the
normal vector facing front and 1 stands for the normal vector
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Fig. 5. Automaton-based discontinuity matcher used to process discontinuities
on each pixel. The results of with and without Automaton-based discontinuity
matcher are shown in Fig. 2.

A
utom

aton-based 
discontinuity m

atcher

z                                                         z’

0               0                       1                1

w/o Automaton-based 
Discontinuity Matcher 

w/ Automaton-based 
Discontinuity Matcher 

Non-watertight Mesh
(self-intersections)

Fig. 6. Example of Discontinuity Point Matching via Automaton.

facing backwards. We add a stop letter $ to the sequence
and then process it with the automaton shown in Fig. 5,
which effectively handles irregular patterns (initial 1s and
repeating 0s or 1s). After being filtered by the automaton,
the produced sequence can then be integrated with Eq. (8).
For watertight meshes, both our automaton and the conference
version produce identical results, correctly converting meshes
to FOF. For non-watertight meshes (e.g., surfaces with open
boundaries or self-intersections, partly missing, or with non-
manifold connectivity), the conference version method fails to
compute FOF accurately, leading to floating artifacts (Fig. 2).
Our automaton-based discontinuity matcher robustly handles
irregular patterns arising from non-watertight meshes (includ-
ing holes, self-intersections, and duplicate faces), effectively
preventing reconstruction artifacts caused by such topological
imperfections. Fig. 6 shows an example of our automaton
processing a non-watertight mesh.

2) FOF to Mesh with Laplacian Coordinate Constraint:
Extracting meshes is necessary for applications such as mesh-
based rendering and animation. Recent methods based on
implicit neural representations need to apply an MLP network
on a 3D sampling grid. Instead, as described in Eq. (4), the
reconstruction of 3D occupancy field from FOF is simply a
multiplication of two tensors. Then, the 3D mesh is extracted
from the iso-surface of the 3D occupancy at the threshold of
0.5 with the Marching Cubes algorithm [45]. Both steps can
be parallelized on GPUs for fast mesh generation.

However, it is crucial to note that the occupancy field

Inside Point

Outside Point

Unreliable Point

Reliable Point

w/o Laplace 
coordinate constraint

w/ Laplace 
coordinate constraint

Fig. 7. Our FOF-to-mesh algorithm with Laplacian coordinate constraint.
Compared with the original Marching Cubes, our conversion algorithm avoids
the stair-step artifacts.

generated by FOF exhibits a view-dependent bias, resulting
in observable stair-step artifacts on the reconstructed mesh.
This bias marginally impacts the geometric accuracy and only
detracts from the visual quality. As illustrated in Fig. 7, when
applying Marching Cubes on FOF, only the points on the
edges parallel to the z-axis remain precise. To address this, we
propose a Laplacian coordinate constraint to eliminate the view
bias. We adapt the Marching Cubes algorithm to incorporate
an additional attribute for each point, which indicates the
reliability of the point’s coordinates. The points produced on
the edges parallel to the z-axis are reliable, and the points
produced on the edges orthogonal to the z-axis are not. For
those unreliable points, their coordinates are adjusted to confer
greater mesh smoothness. This refinement is accomplished
by minimizing the mean square of the Laplacian coordinates,
expressed as:

argmin
Xi,i∈U

∥(D −A)X∥22 , (9)

where D is a diagonal matrix with Dii = di on the diagonal,
di is the number of neighbors of the ith point, X ∈ Rn×3 is
the coordinate matrix to be optimized, and A is the adjacency
matrix. Aij = 1 if points vi and vj are adjacent, otherwise
Aij = 0. U is the index set of unreliable points, which
are to be optimized. Unlike excessive Laplacian smoothing
iterations that degrade geometric features into spherical ap-
proximations, our Laplacian coordinate constraint preserves
topological fidelity and guarantees convergence to ground-
truth mesh shapes.

IV. EXPERIMENTS

A. Datasets
We collect THuman2.1 [47], CustomHumans [48], and

CAPE [46] for our experiments. To maintain reproducibility,
all the datasets we use are publicly accessible. For fair
comparisons, we follow ICON [3] by training our method
on THuman2.0, which is a subset of the first 526 items
in THuman2.1, and using the CAPE dataset for evaluation.
Additionally, we create two additional benchmarks on THu-
man2.1 and CustomHumans to evaluate our method and all
the baselines.
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TABLE II
QUANTITATIVE COMPARISON WITH EXISTING METHODS.

CAPE [46] THuman2.1 [47] CustomHumans [48]

Year Time↓ Chamfer↓ P2S↓ Normal↓ Chamfer↓ P2S↓ Normal↓ Chamfer↓ P2S↓ Normal↓

PIFu∗ [1] 2019 9.98 1.911 2.265 1.461 3.589 3.792 2.504 3.635 3.932 2.365
PIFuHD [11] 2020 15.90 3.279 3.393 1.903 3.963 3.986 2.620 4.184 4.115 2.432
PaMIR∗ [12] 2021 36.48 1.426 1.629 1.377 1.549 1.771 1.720 1.211 1.404 1.350
ICON [3] 2022 35.00 0.967 1.001 0.909 0.968 0.881 1.338 0.798 0.755 1.039
ICONfl [3] 2022 35.56 0.817 0.814 0.755 0.948 0.860 1.254 0.811 0.761 0.984
D-IF [30] 2023 61.15 0.758 0.714 0.752 1.210 1.082 1.332 1.043 0.955 1.098
ECONif [4] 2023 124.55 0.947 0.956 0.928 1.186 1.224 1.442 1.015 1.027 1.106
ECONex [4] 2023 108.99 0.887 0.864 0.844 1.094 1.049 1.301 1.055 1.040 1.091
GTA [29] 2023 50.29 0.738 0.761 0.808 1.514 1.524 1.555 1.382 1.435 1.332
SiFU [2] 2024 62.38 0.676 0.677 0.733 1.015 1.004 1.271 0.880 0.900 0.994
SiTH [18] 2024 83.18 1.016 1.030 1.051 1.218 1.160 1.469 1.111 1.061 1.216
PSHuman [43] 2025 76.69 2.208 1.922 0.718 1.464 1.276 0.675 2.066 1.815 0.772

FOF-Base† [19] 2022 0.09 4.583 3.825 2.345 3.597 3.408 2.489 4.677 4.084 2.671
FOF-SMPL† [19] 2022 - 0.765 0.709 0.649 0.959 0.849 1.120 0.850 0.759 0.882
FOF-X(HR32) (Ours) - 0.02 0.708 0.654 0.634 0.858 0.768 1.049 0.731 0.663 0.783
FOF-X(HR48) (Ours) - 0.02 0.716 0.672 0.639 0.835 0.754 1.033 0.718 0.658 0.771

To obtain RGB images, we render the meshes in Blender
using 630 HDRi environment texture maps from Poly Haven1.
The HDRi maps serve both as panoramic background im-
ages and sources of ambient lighting. Each subject in the
benchmarks is rendered to four images, uniformly distributed
along the yaw axis with a fixed elevation of 0 degrees.
For consistency with the CAPE dataset, all the meshes are
normalized to a height of 1.8 meters. In practice, we find that
the human body occupying a large percentage of the image and
a clearer image typically lead to better reconstruction results.

B. Implementation Details

The reconstruction network of FOF-X takes dual-sided
normal maps and the FOF of SMPL as input. The dimensions
of the input are 512× 512× (3+3+16), and the dimensions
of the produced feature map are 128 × 128 × 256. We adopt
HRNet-W48 [49] as the image encoder of our system due to
its multi-scale perception ability. Since the SMPL mesh only
provides a rough shape prior, the high-frequency components
corresponding to geometric details are redundant for the input.
Empirically, we find that the first 16 terms of the SMPL mesh
is sufficient for the shape prior. The decoder progressively
upsamples the feature map to 256× 256 and 512× 512 using
bilinear interpolations and residual convolutional blocks, while
retaining a channel number of 256 throughout the process.
Finally, a convolutional layer projects the features to a FOF
with a resolution of 512 × 512 × 128. To cope with single
view image as input, we use the off-the-shelf image-to-image
translation network used in ICON [3] for generating dual-sided
normal maps from the single image.

During training, generating multi-view normal maps and
FOFs requires a considerable amount of storage and forward-
ing these data to GPUs can significantly slow down the training
process. However, thanks to our fast FOF conversion algorithm
implemented as a PyTorch CUDA extension, we can efficiently
render meshes to FOF and normal maps. This allows us to keep

1https://polyhaven.com/

all meshes in memory and generate training data on the GPU
in real time. Additionally, this approach enables random view
sampling during training, removing the constraints of training
on fixed views.

We utilize the Adam optimizer [50] and set the learning rate
to 2×10−5 without decay. Our methods and all the variants are
trained on a single RTX-4090 GPU using automatic mixed-
precision training with a batch size of 8. Convergence takes
approximately 10 hours on the THuman2.0 dataset and about
2 days on the THuman2.1 training set.

For consistency with previous works [1], [3], [4], we employ
a weak perspective camera. The scale of the weak perspective
camera is fixed at 1 for training and evaluation, resulting
in an orthogonal projection. But note that we can transform
world space to NDC (Normalized Device Coordinates) space
to support perspective cameras straightforwardly. We follow
the post-processing for hands described in ECON [4], fusing
the hands of the parametric model with the reconstructed body.
This strategy is not used in our real-time systems.

C. Metrics

We use Chamfer distance, P2S (point-to-surface) distance,
3D IoU (Intersection over Union), and normal map error
for quantitative evaluation. In the following, we provide a
summary of metrics used in our experiments:

a) Chamfer and P2S Distances: We use Chamfer and
P2S distances to evaluate the surface geometric error between
the predicted and ground-truth meshes. Here, the Chamfer
distance dcd is defined as:

dcd(Mpr, Spr,Mgt, Sgt) =
1

2 |Spr|
∑

x∈Ppr

d(x,Mgt)+

1

2 |Sgt|
∑

x∈Sgt

d(x,Mpr),
(10)

where Spr, Sgt are the sets of points uniformly sampled on
the predicted and ground-truth mesh surfaces Mpr and Mgt

separately, and d(x,M) is the minimal distance from a point
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Fig. 8. Qualitative comparison against the state-of-the-art methods.

x to the mesh surface M . We report the averaged Chamfer
distances of all test samples. We also measure the average
point-to-surface distance from the points on the reconstructed
surface to the ground-truth mesh. The P2S distance dp2s is
defined as:

dp2s(Spr,Mgt) =
1

|Spr|
∑

x∈Ppr

d(x,Mgt). (11)

Note that this metric alone does not fully measure geometric
accuracy. For instance, the P2S distance between a ground-
truth mesh and a partial ground-truth mesh would be zero.
However, we also report this metric to align with the existing
published works.

b) Normal Difference: To measure the visual quality of
the reconstructed geometries, we render them as normal maps
and compute the mean squared error with the ground-truth
normal maps. For each reconstructed mesh, we render four
normal maps from views at {0◦, 90◦, 180◦, 270◦} based on
vertex normals. We do not apply any anti-aliasing techniques
when rendering these normal maps. Such a metric provides an
effective assessment of the visual fidelity of the reconstruc-
tions.

D. Comparison with the State of the Arts

We compare our method with the state-of-the-art ap-
proaches, including PIFu [1], PIFuHD [11], PaMIR [12],
ICON [3], ECON [4], D-IF [30], GTA [29], SiFU [2], SiTH
[18], and PSHuman [43] on CAPE [46], THuman2.1 [47], and
CustomHumans [48].

a) Quantitative Results: The quantitative results are sum-
marized in Table II. ∗ denotes the re-implemented version in

ICON [3]. † denotes the re-implemented version with the co-
sine series and the improved inter-conversion algorithms. FOF-
X(HR32) and FOF-X(HR48) are FOF-X model with HRNet-
W32 and HRNet-W48 respectively. All methods listed, except
PIFuHD [11] and PSHuman [43], are trained on THuman2.0
[47]. It is worth noting that PSHuman’s [43] dataset includes
THuman 2.1. For PIFu [1] and PaMIR [12], similar to ICON
[3], we use the re-implemented versions, as the official releases
are trained with additional commercial datasets. Since some
methods do not provide the training sample lists, we use
THuman2.1 instead of THuman2.0 to evaluate all methods.
We use 512× 512× 512 resolution for the input of all these
methods. We do not compare our method with [13] and [51]
because their codes are not released. For simplicity, we also
ignore some works that have already been compared with
the state-of-the-art methods listed above. We found that some
methods are sensitive to the ratio of the human subject’s size
in the image. To ensure consistency, we use a ratio of 0.9 for
all methods, corresponding to the 1.8m height normalization
mentioned in the datasets section. Ground-truth SMPL meshes
are used to better demonstrate the capability of the evaluated
methods.

As can be seen, our methods show the lowest reconstruction
errors compared to other methods on CustomHumans datasets.
As mentioned in [18], CAPE provides the fitted SMPL+D
meshes instead of the original scanned meshes as the ground-
truth, leading to mismatches between the image details and
the ground-truth meshes. This may cause a potential bias
in evaluation. Despite this, our FOF-X can still achieve a
comparable metric on CAPE. In addition, on the THuman2.1
dataset, we are only slightly inferior to PSHuman [43] in
terms of normals. However, we note that PSHuman’s [43]
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Fig. 9. Qualitative comparison against the state-of-the-art methods on non-frontal view inputs.

training dataset incorporates THuman2.1 without providing
clear train/test splits, potentially allowing some test data to
be included in training. Notably, our method demonstrates ro-
bustness across all benchmarks, achieving better or comparable
performance to other computationally heavy methods.

b) Qualitative Results: We conduct a qualitative compar-
ison in Fig. 8. As can be seen, SiTH [18] and PSHuman [43]
generally produces good results but sometimes introduces arti-
facts in the limbs and side shapes. ECON [4] suffers from self-
occlusions which is the essential limitation of its optimization-
based solution; SiFU [2] cannot recover detailed surfaces,
although it can produce accurate rough shapes; D-IF [30] has
difficulties dealing with limb shapes due to the way it uses
the SMPL prior. In contrast, our method is able to reconstruct
plausible 3D human models under different body poses and
shapes. In terms of surface quality and geometric accuracy, our
method outperforms other state-of-the-art approaches. Notably,
our method is much more lightweight than others, allowing for
real-time reconstruction.

Fig. 9 shows additional comparison on non-frontal view
inputs. Generally, it is more challenging to obtain information
about the body and limb shape from non-frontal view inputs. In
this case, the results of SiTH [18], D-IF [30], and ECON [4] all
experience varying degrees of performance degradation. SiFU
[2] is still constrained by the resolution issue in producing
detailed surfaces. PSHuman [43] has certain difficulties in
processing limb shapes. In contrast, our method is more robust
and still achieves good results.

c) Comparison of Running Times: Table II shows the
comparison results in terms of running time. All methods

except PSHuman [43] are tested on a single RTX-3090 GPU,
where FOF-X represents the acceleration of FOF-X using
TensorRT. PSHuman [43] is tested on the A100 GPU due
to memory limitations. Our FOF-X takes 0.02 seconds per
frame, demonstrating 500× acceleration over the fastest base-
line (PIFu [1]: 9.98s). The original system presented in our
conference publication, FOF [19], is implemented in Python.
Due to limitations in the original mesh-to-FOF algorithm, the
SMPL prior is not supported in the FOF real-time system.
Since FOF-SMPL requires the execution of three separate
scripts, its running time is not reported. Our enhanced pipeline
FOF-X adds additional components such as SMPL estima-
tion, image segmentation, and rendering while maintaining
real-time performance. Notably, all variants of our method
(Python/TensorRT) consistently outperform existing works in
terms of efficiency by two orders of magnitude.

E. Ablation Study

In this section, we conduct ablation experiments to validate
the effectiveness of the settings and the proposed components
in our FOF representation and FOF-X framework. Note that
the ablation studies on the number of Fourier terms to use
and the noise robustness of FOF are not using neural net-
works. These experiments are designed to explore the intrinsic
properties of the FOF representation itself rather than the
performance of the reconstruction algorithm.

1) Number of Terms to Use: In the original FOF, we use
2N + 1 = 31 terms of the Fourier series to represent the
occupancy field, which has been shown to be sufficient for
maintaining geometric accuracy. However, we observe that
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TABLE III
GEOMETRIC METRICS FOR DIFFERENT NUMBERS OF FOF COMPONENTS.

N 8 16 32 64 128 256

P2S 1.342 0.466 0.148 0.054 0.027 0.024
Chamfer 2.544 0.529 0.168 0.062 0.030 0.025

𝑁𝑁 = 8 𝑁𝑁 = 16 𝑁𝑁 = 32 𝑁𝑁 = 64 𝑁𝑁 = 128 𝑁𝑁 = 256 Ground Truth

Fig. 10. Results of different number N of coefficients used in FOF-X.

the absence of high-frequency components can lead to visual
artifacts. Therefore, we use N = 128 terms of the cosine
series in FOF-X. We illustrate the impact of varying N on
the accuracy of the approximation in Fig. 10. The metrics for
different values of N are also presented in Table III. When
N ≤ 16, noticeable artifacts appear on the meshes. Noting the
geometric details in the ear region, although using N = 32
preserves most geometric information, we prefer N = 128 in
FOF-X to ensure higher visual quality and eliminate potential
artifacts.

2) Sampling Scalability: The frequency-domain resolution
of FOF can be adaptively inferred according to the time needs
of the system, without the need for retraining. We explored
the effect of resolution (number of components) on the results
taking N = 128. Fig. 11 illustrates the effect of changing
resolution on the accuracy of the results. Metrics of different
N values are also given in Table IV.

3) Noise Robustness: Neural networks often struggle to
produce precise results, and their outputs can be considered
as samples from a certain distribution, leading to inherent
noise in the results. The geometric representation used must
therefore be robust to noise and small perturbations. Therefore,
representations that are sensitive to noise are not suitable for
machine learning. To verify the noise robustness of FOF, we
manually add relative Gaussian noise with different variances
and show the quantitative results in Fig. 12 and Table V.
Based on these experiments, we can conclude that the FOF
is very robust to noise and can keep a general shape even
with large noise. Thus, it is reasonable and feasible to use
neural networks to estimate FOFs.

4) Dual-sided Normal Maps: To mitigate the performance
degradation caused by the domain gap between the training
images and the real images, we take the RGB images as
input and first map them to dual-sided normal maps for the
subsequent pipeline. To verify the effectiveness of such a
strategy, we compare FOF-X with our baseline method, which
uses RGB images as input directly. As shown in Table II, with
dual-sided normal maps as an internal representation, FOF-X-
32 is more robust than the original FOF (FOF-SMPL†) on test

TABLE IV
GEOMETRIC METRICS FOR DIFFERENT RESOLUTION OF FOF.

Res 16 32 64 128 256 512

P2S 3.580 1.764 0.885 0.396 0.139 0.028
Chamfer 3.655 1.746 0.889 0.403 0.146 0.031

Res=16 Res=32 Res=64 Res=128 Res=256 Res=512 Ground Truth

Fig. 11. Results of different resolution Res used in FOF-X. We use Res =
256 in our implementation.

sets. Note that FOF-X is trained on ground-truth normal maps
and tested on maps generated by an off-the-shelf model. Fig.
1 shows the visual results.

5) Improved Inter-Conversion Algorithm: Fig. 2 shows the
effectiveness and robustness of our improved inter-conversion
algorithm. As can be seen, our parallelized mesh-to-FOF
algorithm demonstrates strong robustness. The quantitative
results for two mesh-to-FOF algorithms are also given in
Table VI. With the automaton-based discontinuity matcher, it
effectively avoids the floating masses caused by duplicate or
missing discontinuities. This algorithm is integrated into the
real-time pipeline for its excellent parallelizability. Table VII
shows the quantitative results of the FOF-to-mesh methods.
To better represent the visual effect of the mesh, we render
the mesh as a normal diagram and introduce visual metrics2

to evaluate results. Our improved FOF-to-mesh algorithm
avoids the stair-step artifacts caused by view bias effectively.
Although the Laplacian coordinate constraint solution is a little
time-consuming, we can use Laplacian smoothing in the real-
time pipeline as an alternative and apply our full FOF-to-mesh
algorithm during the mesh export stage.

F. The Real-time Pipeline

To perform real-time monocular human reconstruction, we
design a four-stage pipeline. In the first stage, we get an image
from the video stream with OpenCV [52], use RVM [53] to
get a human mask to remove the background, and predict a
SMPL model as prior with 4D-humans [54]. RVM is originally
a matting method, and we use a threshold of 0.5 to obtain
a binary mask. In the second stage, a CUDA-implemented
rasterizer is used to render dual-sided normal maps and a FOF
representation for the predicted SMPL. The proposed mesh-
to-FOF conversion algorithm is integrated into the rasterizer.
In the third stage, the pre-trained dual-sided normal estimator
and our reconstruction network are encapsulated into a single

2SSIM (structural similarity), PSNR (peak signal-to-noise ratio) and LPIPS
(learned perceptual image patch similarity) measure structural preservation,
pixel-level accuracy and human perceptual consistency, respectively.
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TABLE V
GEOMETRIC METRICS FOR DIFFERENT NOISE LEVEL

Noise level 0% 5% 10% 15% 20% 25% 30%

P2S 0.027 0.030 0.035 0.041 0.048 0.075 0.224
Chamfer 0.030 0.032 0.037 0.043 0.049 0.065 0.141

𝜎𝜎 = 0%Raw Mesh 𝜎𝜎 = 10% 𝜎𝜎 = 20% 𝜎𝜎 = 30%

Fig. 12. Results showing the effects of different noise levels applied to FOF-
X, demonstrating FOF-X’s robustness to noise.

Fig. 13. Our system applied to perform real-time 3D human reconstruction
from a single monocular RGB input. Please see the supplement video for the
live demonstration.

neural network module, which is used to reconstruct the FOF.
In the final stage, the FOF is resized to a proper resolution
(256 × 256 in our implementation) and transformed into
a mesh. All four stages are implemented in PyTorch and
accelerated with TensorRT, running on a single RTX-4090
GPU. Our pipeline works at 30+ FPS, which is limited by
the camera (Logic C920 Pro). With a recorded video, it can
achieve a frame rate of about 50 FPS. Fig. 13 shows the
real-time reconstruction system (all human subjects provided
informed consent for data collection). Please check the demo
video for more results.

V. CONCLUSION AND DISCUSSION

Conclusion. In this paper, we first present the Fourier
Occupancy Field (FOF) representation for monocular real-time
3D human reconstruction and further extend it to the FOF-
X framework for more detailed results. FOF is an efficient
and flexible 3D representation defined as a 2D vector field
orthogonal to the z-axis. When extending the FOF represen-
tation to the FOF-X reconstruction framework, we introduce

TABLE VI
GEOMETRIC METRICS FOR DIFFERENT MESH-TO-FOF ALGORITHMS

Chamfer↓ P2S↓ Normal↓

Algorithms Used in FOF 0.447 0.206 0.264
Algorithms Used in FOF-X 0.041 0.063 0.099

TABLE VII
VISUAL METRICS FOR DIFFERENT FOF-TO-MESH ALGORITHMS

SSIM↑ PSNR↑ LPIPS↓

w/o Laplacian coordinate constraint 0.959 32.09 0.018
w/ Laplacian coordinate constraint 0.965 32.35 0.015

additional improvements to the conversion algorithm and the
reconstruction algorithm. For the conversion algorithm, an
automaton-based discontinuity matcher is designed to convert
a triangle mesh to a FOF efficiently and robustly. Thanks to
this, the SMPL mesh prior can be added into the real-time
pipeline, further enhancing the performance of the system.
Besides, the FOF to mesh conversion is also improved with
the Laplacian coordinate constraint, eliminating the stair-step
artifacts. For the reconstruction framework, we predict dual-
sided normal maps from input RGB images first and then use
dual-sided normal maps instead of RGB images as the input
of the main network, which greatly mitigates the performance
degradation caused by the domain gap between the training
images and the real images. The efficacy of FOF and FOF-X
is validated on 3D scanned and in-the-wild datasets, where our
approaches effectively recover detailed human geometry with
better quality than previous solutions.

Limitations and Future Work. The FOF representation is
based on the Fourier series expansion of the square-wave-like
function. When applying FOF to thin objects, the spectrum of
the function will contain many high-frequency components.
In such cases, we need more terms in the Fourier series to
approximate the function. The number of terms we need is
roughly inversely proportional to the thickness of the object. In
our experiments, we found that FOF fails to reconstruct objects
that are too thin, like single layer mesh. Although wavelet
transformation and short-time Fourier transformation seem to
be a promising option, the implementation and computational
efficiency still need more exploration. In addition, the FOF
representation shows significant potential for broader applica-
tions. Its mathematical formulation and efficient parameteri-
zation could be extended to general object representation and
even scene-level modeling through appropriate architectural
modifications. These promising directions will be explored
in future work to enhance the framework’s capabilities and
applicability.

VI. ACKNOWLEDGEMENTS

This work was partially supported by the National Key
R&D Program of China (2023YFC3082100) and the National
Natural Science Foundation of China (62171317, 62125107,
and 62231018).



14

REFERENCES

[1] S. Saito, Z. Huang, R. Natsume, S. Morishima, A. Kanazawa, and H. Li,
“PIFu: Pixel-aligned implicit function for high-resolution clothed human
digitization,” in Proc. ICCV, 2019.

[2] Z. Zhang, Z. Yang, and Y. Yang, “SIFU: Side-view conditioned implicit
function for real-world usable clothed human reconstruction,” in Proc.
CVPR, 2024.

[3] Y. Xiu, J. Yang, D. Tzionas, and M. J. Black, “ICON: Implicit Clothed
humans Obtained from Normals,” in Proc. CVPR, 2022.

[4] Y. Xiu, J. Yang, X. Cao, D. Tzionas, and M. J. Black, “ECON: Explicit
clothed humans optimized via normal integration,” in Proc. CVPR, 2023.

[5] A. A. Alatan, Y. Yemez, U. Gudukbay, X. Zabulis, K. Muller, Ç. E.
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